Wired - Easy DNA Editing Will Remake the World. Buckle Up. 5-15min

Everyone at the Napa meeting had access to a gene-editing technique called Crispr-Cas9. The first term is an acronym for “clustered regularly interspaced short palindromic repeats,” a description of the genetic basis of the method; Cas9 is the name of a protein that makes it work. Technical details aside, Crispr-Cas9 makes it easy, cheap, and fast to move genes around—any genes, in any living thing, from bacteria to people. ... Using the three-year-old technique, researchers have already reversed mutations that cause blindness, stopped cancer cells from multiplying, and made cells impervious to the virus that causes AIDS. Agronomists have rendered wheat invulnerable to killer fungi like powdery mildew, hinting at engineered staple crops that can feed a population of 9 billion on an ever-warmer planet. Bioengineers have used Crispr to alter the DNA of yeast so that it consumes plant matter and excretes ethanol, promising an end to reliance on petrochemicals. Startups devoted to Crispr have launched. International pharmaceutical and agricultural companies have spun up Crispr R&D. Two of the most powerful universities in the US are engaged in a vicious war over the basic patent. Depending on what kind of person you are, Crispr makes you see a gleaming world of the future, a Nobel medallion, or dollar signs. ... It brings with it all-new rules for the practice of research in the life sciences. But no one knows what the rules are—or who will be the first to break them. ... As it happened, the people who found it weren't genome engineers at all. They were basic researchers, trying to unravel the origin of life by sequencing the genomes of ancient bacteria and microbes called Archaea (as in archaic), descendants of the first life on Earth. Deep amid the bases, the As, Ts, Gs, and Cs that made up those DNA sequences, microbiologists noticed recurring segments that were the same back to front and front to back—palindromes. The researchers didn't know what these segments did, but they knew they were weird. In a branding exercise only scientists could love, they named these clusters of repeating palindromes Crispr. ... Pick your creature, pick your gene, and you can bet someone somewhere is giving it a go.

Mosaic - What’s wrong with Craig Venter? 5-15min

His latest venture, Human Longevity, Inc., or HLI, creates a realistic avatar of each of its customers – they call the first batch ‘voyagers’ – to provide an intimate, friendly interface for them to navigate the terabytes of medical information being gleaned about their genes, bodies and abilities. Venter wants HLI to create the world’s most important database for interpreting the genetic code, so he can make healthcare more proactive, preventative and predictive. Such data marks the start of a decisive shift in medicine, from treatment to prevention. Venter believes we have entered the digital age of biology. And he is the first to embark on this ultimate journey of self-discovery. ... His critics call him arrogant but, having talked to him on and off for more than two decades, I think Venter has earned the right to be bullish about his abilities to build a biotech venture from scratch. ... So far, HLI has amassed the sequences of around 20,000 whole genomes, says Venter (he won’t be drawn on whether it is the biggest cache – probably, but he adds that it depends on the details and that “all kinds of people make all kinds of claims”). But, of course, he wants even more. The company has room for more sequencing facilities on its third floor and is considering a second centre in Singapore, planning to rapidly scale to sequencing the genomes of 100,000 people per year – whether children, adults or centenarians, and including both those with disease and those who are healthy. By 2020, Venter aims to have sequenced a million genomes. ... in about a month, each Illumina sequencer can tear through 16 human genomes at the same coverage in just three days. Each week, these machines pump terabytes of data into the cloud run by Amazon Web Services. ... Venter says their findings have changed his static view of the genome. For instance, he has been able to compare his 2006 genome with today’s, using three different sequencing technologies. “One of the findings that would have shocked me and the rest of the world 15 years ago is that our genome is continually changing,” he says. “We can relatively accurately predict your age from your genome sequence, or at least the age when the sample was taken.” ... Targeted initially at self-insured executives and athletes, a full health scan will be priced at $25,000.

New York Magazine - An MIT Scientist Claims That This Pill Is the Fountain of Youth 15min

Until very recently, aging was just a thing that happens, a decay or breakdown, chaotic and impossibly complex, that seems to accelerate only after we’ve reached the age of reproduction. ... from its birth in the early 1990s, the field of geroscience has faced significant impediments. Coming on the heels of centuries of humbug (e.g., Ponce de Leon, crushed dog testicles, Ted Williams’s frozen head), it has had to overcome a near-universal presumption of quackery. It is also an awkward match with contemporary drug research, which is organized around addressing specific maladies. Since aging is a risk factor rather than a disease — in the language of the FDA, it’s never been considered an “indication” — pharmaceutical companies are disincentivized from developing broadly aging-targeted drugs, and foundations tend to reserve their grant money for cancer, Alzheimer’s, and the like. ... For Guarente, watching the boom and bust of resveratrol was as motivating as it was unnerving. He redoubled his own efforts to be the first to bring an anti-aging pill to market, even as he and Sinclair squabbled with Kennedy and Kaeberlein in the press. At times, the interpersonal strife can seem like nothing so much as the professional equivalent of a red Maserati convertible, a time-slowing denial of the ultimate stakes that bind the men: their shared obsession with combating aging, as every one of them gets older.

The Chronicle of Higher Education - Is This Economist Too Far Ahead of His Time? 12min

It’s the year 2120. You feel no hunger, no cold, no heat, no pain. There’s no need to eat or to take medicine, though you can if you like. You are beautiful, intelligent, and charismatic, as are your friends, co-workers, lovers. Though the economy is fiercely competitive, retirement is not far off. You do not fear death. Look out your office window and you see sunlit spires towering over tree-lined boulevards. ... At least this is what you think you see. In fact, you live and work in virtual reality. Your city amounts to racks of computer hardware and the pipes that cool them. And you are not "you" in the traditional sense: You are an "em," a robotic brain emulation created by scanning a particular human brain and uploading it to a computer. On the upside, you process information 1,000 times faster than a human. On the downside, you inhabit a robotic body, and you stand roughly two millimeters tall. ... This is the world Robin Hanson is sketching out to a room of baffled undergraduates at George Mason University on a bright April morning. To illustrate his point, he projects an image of an enormous futuristic city alongside clip art of a human castaway cowering on a tiny desert island. His message is clear: The future belongs to "ems." ... This may sound more like science fiction than scholarship, but that’s part of the point. Hanson is an economist with a background in physics and engineering; a Silicon Valley veteran determined to promote his theories in an academy he finds deeply flawed; a doggedly rational thinker prone to intentionally provocative ideas that test the limits of what typically passes as scholarship. Those ideas have been mocked, memed, and marveled at — often all at once. ... Hanson, deeply skeptical of conventional intellectual discourse, argues that academics have abdicated their societal responsibilities by ignoring more speculative work.

Bloomberg - Decapitate and Freeze Now. Figure Out Immortality Later 14min

The brain would be preserved there—the liquid nitrogen topped off once in a while—for however long the science and technology community takes to solve some vexing problems. First, how to repair the tissue damage caused by freezing. Second, and more important, how to gain access to the data inside—the neurons and connections and impulses that constitute a person’s memories, emotions, and personality—and bring it all back to life, either in another, healthier body or uploaded into a computer. ... The best way to cryopreserve is to replace all the water in the body with a chemical that essentially turns the tissue into glass as it freezes. Vitrification, as the process is known, prevents the damage caused by ice crystals when a body is frozen in its natural state. But vitrification has its own flaw: No one knows how to reverse it. ... Cryonics was first proposed by the physicist Robert Ettinger in his 1964 book, The Prospect of Immortality. Five years later, the first human was frozen, and a small, devoted community of cryonicists (almost all of them in America) have been debating best practices ever since. Today, the world leader is Alcor Life Extension Foundation

The New Yorker - Silicon Valley’s Quest to Live Forever 33min

For decades, the solution to aging has seemed merely decades away. In the early nineties, research on C. elegans, a tiny nematode worm that resembles a fleck of lint, showed that a single gene mutation extended its life, and that another mutation blocked that extension. The idea that age could be manipulated by twiddling a few control knobs ignited a research boom, and soon various clinical indignities had increased the worm’s life span by a factor of ten and those of lab mice by a factor of two. The scientific consensus transformed. Age went from being a final stage (a Time cover from 1958: “Growing Old Usefully”) and a social issue (Time, 1970: “Growing Old in America: The Unwanted Generation”) to something avoidable (1996: “Forever Young”) or at least vastly deferrable (2015: “This Baby Could Live to Be 142 Years Old”). Death would no longer be a metaphysical problem, merely a technical one. ... The celebration was premature. Gordon Lithgow, a leading C. elegans researcher, told me, “At the beginning, we thought it would be simple—a clock!—but we’ve now found about five hundred and fifty genes in the worm that modulate life span. And I suspect that half of the twenty thousand genes in the worm’s genome are somehow involved.” That’s for a worm with only nine hundred and fifty-nine cells. ... For us, aging is the creeping and then catastrophic dysfunction of everything, all at once. ... The great majority of longevity scientists are healthspanners, not immortalists. They want to give us a healthier life followed by “compressed morbidity”—a quick and painless death. ... The battle between healthspanners and immortalists is essentially a contest between the power of evolution as ordained by nature and the potential power of evolution as directed by man. ... Aging doesn’t seem to be a program so much as a set of rules about how we fail. Yet the conviction that it must be a program is hard to dislodge from Silicon Valley’s algorithmic minds. If it is, then reversing aging would be a mere matter of locating and troubleshooting a recursive loop of code.