Was human evolution inevitable, or do we owe our existence to a once-in-a-universe stroke of luck? ... At first glance, everything that’s happened during the 3.8 billion-year history of life on our planet seems to have depended quite critically on all that came before. And Homo sapiens arrived on the scene only 200,000 years ago. The world got along just fine without us for billions of years. Gould didn’t mention chaos theory in his book, but he described it perfectly: ‘Little quirks at the outset, occurring for no particular reason, unleash cascades of consequences that make a particular future seem inevitable in retrospect,’ he wrote. ‘But the slightest early nudge contacts a different groove, and history veers into another plausible channel, diverging continually from its original pathway.’ ... One of the first lucky breaks in our story occurred at the dawn of biological complexity, when unicellular life evolved into multicellular. ... Throughout human prehistory, biological change and technological change ran in parallel. Brains were increasing in size – but this was not unique to our ancestors, and can be seen across multiple hominin species. Something very complicated was going on – a kind of arms race, Tattersall suggests, in which cognitive capacity and technology reinforced each other. At the same time, each branch of the human evolutionary tree was forced to adapt to an ever-changing climate.
How a 500-year experiment to revive dormant microbes could reveal the secrets to cheating time ... For almost as long as we have known about micro-organisms, we have known about dormancy. In 1702, the Dutch biologist Antonie van Leeuwenhoek collected some dried ‘animalcules’ from a nearby gutter and added water. Peering through his handmade microscope, he observed that ‘they began to extend their bodies and in half an hour at least 100 of them were swimming about the glass’. ... Aged 70, van Leeuwenhoek had just discovered the dormant states of rotifers – small, wheel-shaped animals that can be found in many transient freshwater habitats. When conditions become too Spartan, these humble organisms contract into dry, oval-shaped husks in order to survive. ... Water is essential for life, and yet anhydrobiotes appear to get by without it. How? According to the ‘water replacement hypothesis’, they exchange their cellular fluid for sugars such as sucrose and trehalose. The result is a glass-like substance that not only retains the cell’s shape on rehydration, but also slows down a lot of unwanted chemical reactions. With this scaffolding in place, they reduce the fires of their metabolisms to embers, conserving their energy like a ground squirrel within its winter den, waiting for conditions to improve. They keep things ticking over.
Science is not a ‘body of knowledge’ – it’s a dynamic, ongoing reconfiguration of knowledge and must be free to change ... each scientific discipline is governed by an accepted set of theories and metaphysical assumptions, within which normal science operates. Periodically, when this rather humdrum ‘puzzle solving’ leads to results that are inconsistent with the regnant perspective, there follows a disruptive, exciting period of ‘scientific revolution’, after which a new paradigm is instituted and normal science can operate once more. ... When Newton said: ‘If I have seen farther, it is by standing on the shoulders of giants’, he wasn’t merely being modest; rather he was emphasising the extent to which science is cumulative, mostly building on past achievements rather than making quantum leaps. ... the accumulation process generates not just something more, but often something altogether new. Sometimes the new involves the literal discovery of something which hadn’t previously been known (electrons, general relativity, Homo naledi). At least as important, however, are conceptual novelties, changes in the ways that people understand – and often misunderstand – the material world: their operating paradigms. ... The world’s factual details are in continual Heraclitean flux, but the basic rules and patterns underlying these changes in the physical and biological world are themselves constant. ... Our insights, however, are always ‘evolving’. ... Science is a process, which, unlike ideology, is distinguished by intellectual flexibility, by a graceful, grateful (albeit sometimes grudging) acceptance of the need to change our minds, as our understanding of the world evolves. Most people aren’t revolutionaries, scientific or otherwise. But anyone aspiring to be well-informed needs to understand not only the most important scientific findings, but also their provisional nature, and the need to avoid hardening of the categories: to know when it is time to lose an existing paradigm and replace it with a new one. ... Holding still is exactly what science won’t do.
New research puts us on the cusp of brain-to-brain communication. Could the next step spell the end of individual minds? ... we’ve moved beyond merely thinking orders at machinery. Now we’re using that machinery to wire living brains together. Last year, a team of European neuroscientists headed by Carles Grau of the University of Barcelona reported a kind of – let’s call it mail-order telepathy – in which the recorded brainwaves of someone thinking a salutation in India were emailed, decoded and implanted into the brains of recipients in Spain and France (where they were perceived as flashes of light). ... What are the implications of a technology that seems to be converging on the sharing of consciousness? ... It would be a lot easier to answer that question if anyone knew what consciousness is. There’s no shortage of theories. ... Their models – right or wrong – describe computation, not awareness. There’s no great mystery to intelligence; it’s easy to see how natural selection would promote flexible problem-solving, the triage of sensory input, the high-grading of relevant data (aka attention). ... If physics is right – if everything ultimately comes down to matter, energy and numbers – then any sufficiently accurate copy of a thing will manifest the characteristics of that thing. Sapience should therefore emerge from any physical structure that replicates the relevant properties of the brain.
Around 540 million years ago, the ancestors of most modern animal groups suddenly appeared on the scene, in an outburst of speciation known as the Cambrian explosion. Many of these pioneering creatures left fossils behind. Some are so well preserved that scientists have been able to use scanning electron microscope images to piece together their inner anatomy, eyes included, and reconstruct their owners’ view of the world. ... But these eyes were already complex, and there are no traces of their simpler precursors. The fossil record tells us nothing about how sightless animals first came to see the world. This mystery flustered Charles Darwin. “To suppose that the eye, with all its inimitable contrivances ... could have been formed by natural selection, seems, I freely confess, absurd in the highest possible degree,” he wrote in Origin of Species. ... in the very next sentence, Darwin solves his own dilemma: “Yet reason tells me, that if numerous gradations from a perfect and complex eye to one very imperfect and simple, each grade being useful to its possessor, can be shown to exist … then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, can hardly be considered real.” ... The gradations he spoke of can be shown to exist. Living animals illustrate every possible intermediate between the primitive light-sensitive patches on an earthworm and the supersharp camera eyes of eagles. ... Even under the most pessimistic conditions, with the eye improving by just 0.005 percent each generation, it takes just 364,000 years for the simple sheet to become a fully functioning camera-like organ. As far as evolution goes, that’s a blink of an eye. ... But simple eyes should not be seen as just stepping-stones along a path toward greater complexity. Those that exist today are tailored to the needs of their users. ... Nothing that sees does so without proteins called opsins—the molecular basis of all eyes. Opsins work by embracing a chromophore, a molecule that can absorb the energy of an incoming photon. The energy rapidly snaps the chromophore into a different shape, forcing its opsin partner to likewise contort. This transformation sets off a series of chemical reactions that ends with an electrical signal.
As the eugenic movement peaked and crashed, advances in reproductive technology made designer babies thrillingly, frighteningly possible. In the 1920s and early ’30s, visionaries imagined divorcing love and even marriage from procreation. Reproduction could be done scientifically, rationally, in a test tube. For optimists such as the biologist J B S Haldane, such ‘ectogenesis’ would permit humans to take the reins of their own evolution, eliminating disease and mutation, and perhaps enhancing qualities such as intelligence, kindness and strength of character. ... The development of molecular biology in the 1950s and ’60s transformed genes from abstractions into hard chemicals. Suddenly, scientists understood basically what a gene was. They thought they understood what a human was. ... By the mid-1980s, enthusiasts were discussing ‘genetic surgery’. The idea was to treat genetic disease by inserting a therapeutic gene into a modified virus and then ‘infect’ the patient; the virus would do the tricky part of inserting the gene into the chromosome. Through the 1990s, gene therapy was hyped almost as hard as CRISPR (clustered regularly interspaced short palindromic repeats), the new technology for ‘editing’ genes, is today. ... in terms of bringing us closer to a science-fiction world of intelligently designing our children – utopia or dystopia, take your pick – gene editing is more precise than accurate. The qualities we want in a child or in society can’t be had by tweaking a few nucleotides. There are no short cuts. To think otherwise is to conflate power with knowledge, to overestimate our understanding of biology, and to overestimate the role of genes in determining who we are.
His latest venture, Human Longevity, Inc., or HLI, creates a realistic avatar of each of its customers – they call the first batch ‘voyagers’ – to provide an intimate, friendly interface for them to navigate the terabytes of medical information being gleaned about their genes, bodies and abilities. Venter wants HLI to create the world’s most important database for interpreting the genetic code, so he can make healthcare more proactive, preventative and predictive. Such data marks the start of a decisive shift in medicine, from treatment to prevention. Venter believes we have entered the digital age of biology. And he is the first to embark on this ultimate journey of self-discovery. ... His critics call him arrogant but, having talked to him on and off for more than two decades, I think Venter has earned the right to be bullish about his abilities to build a biotech venture from scratch. ... So far, HLI has amassed the sequences of around 20,000 whole genomes, says Venter (he won’t be drawn on whether it is the biggest cache – probably, but he adds that it depends on the details and that “all kinds of people make all kinds of claims”). But, of course, he wants even more. The company has room for more sequencing facilities on its third floor and is considering a second centre in Singapore, planning to rapidly scale to sequencing the genomes of 100,000 people per year – whether children, adults or centenarians, and including both those with disease and those who are healthy. By 2020, Venter aims to have sequenced a million genomes. ... in about a month, each Illumina sequencer can tear through 16 human genomes at the same coverage in just three days. Each week, these machines pump terabytes of data into the cloud run by Amazon Web Services. ... Venter says their findings have changed his static view of the genome. For instance, he has been able to compare his 2006 genome with today’s, using three different sequencing technologies. “One of the findings that would have shocked me and the rest of the world 15 years ago is that our genome is continually changing,” he says. “We can relatively accurately predict your age from your genome sequence, or at least the age when the sample was taken.” ... Targeted initially at self-insured executives and athletes, a full health scan will be priced at $25,000.
According to scientists I spoke with, the quality of your slumber has more repercussions on your happiness, intelligence, and health than what you eat, where you live, or how much money you make. Not to be a downer, but chronic sleep deprivation, which Amnesty International designates a form of torture, has been linked to diabetes, cancer, high blood pressure, heart disease, stroke, learning difficulties, colds, gastrointestinal problems, depression, execution (the sleep-starved defense minister of North Korea is rumored to have been shot after dozing in the presence of Kim Jong-un), world disasters (the Challenger explosion, the Three Mile Island meltdown), and non-disasters ... Many scientists have come to believe that while we sleep the space between our neurons expands, allowing a cranial sewage network—the glymphatic system—to flush the brain of waste products that might otherwise not only prevent memory formation but muck up our mental machinery and perhaps eventually lead to Alzheimer’s. Failing to get enough sleep is like throwing a party and then firing the cleanup crew. ... A National Institutes of Health study showed that twenty-five to thirty per cent of American adults have periodic episodes of sleeplessness and twenty per cent suffer from chronic insomnia. On the advice of sleep doctors, fatigue-management specialists, and know-it-alls on wellness blogs, these tossers and turners drink cherry juice, eat Atlantic perch, set the bedroom thermostat between sixty-seven and seventy degrees, put magnets under the pillow, curl their toes, uncurl their toes, and kick their partners out of bed, usually to little avail. ... The ancient Romans smeared mouse fat onto the soles of their feet, and the Lunesta of the Dark Ages was a smoothie made from the gall of castrated boars.
The sciences have grown steadily bolder in their claim that all human behavior can be explained through the clockwork laws of cause and effect. This shift in perception is the continuation of an intellectual revolution that began about 150 years ago, when Charles Darwin first published On the Origin of Species. Shortly after Darwin put forth his theory of evolution, his cousin Sir Francis Galton began to draw out the implications: If we have evolved, then mental faculties like intelligence must be hereditary. But we use those faculties—which some people have to a greater degree than others—to make decisions. So our ability to choose our fate is not free, but depends on our biological inheritance. ... The 20th-century nature-nurture debate prepared us to think of ourselves as shaped by influences beyond our control. But it left some room, at least in the popular imagination, for the possibility that we could overcome our circumstances or our genes to become the author of our own destiny. The challenge posed by neuroscience is more radical: It describes the brain as a physical system like any other, and suggests that we no more will it to operate in a particular way than we will our heart to beat. ... If we could understand any individual’s brain architecture and chemistry well enough, we could, in theory, predict that individual’s response to any given stimulus with 100 percent accuracy. ... What is new, though, is the spread of free-will skepticism beyond the laboratories and into the mainstream. ... When people stop believing they are free agents, they stop seeing themselves as blameworthy for their actions.
- Also: Aeon - Getting smarter 5-15min
Avian vision works spectacularly well (enabling eagles, for instance, to spot mice from a mile high), and his lab studies the evolutionary adaptations that make this so. Many of these attributes are believed to have been passed down to birds from a lizardlike creature that, 300 million years ago, gave rise to both dinosaurs and proto-mammals. While birds’ ancestors, the dinos, ruled the planetary roost, our mammalian kin scurried around in the dark, fearfully nocturnal and gradually losing color discrimination. Mammals’ cone types dropped to two — a nadir from which we are still clambering back. About 30 million years ago, one of our primate ancestors’ cones split into two — red- and green-detecting — which, together with the existing blue-detecting cone, give us trichromatic vision. But our cones, particularly the newer red and green ones, have a clumpy, scattershot distribution and sample light unevenly. ... Bird eyes have had eons longer to optimize. Along with their higher cone count, they achieve a far more regular spacing of the cells. But why, Corbo and colleagues wondered, had evolution not opted for the perfect regularity of a grid or “lattice” distribution of cones? The strange, uncategorizable pattern they observed in the retinas was, in all likelihood, optimizing some unknown set of constraints. What these were, what the pattern was, and how the avian visual system achieved it remained unclear. ... Determining whether a system is hyperuniform requires algorithms that work rather like a game of ring toss. ... Hyperuniformity is clearly a state to which diverse systems converge, but the explanation for its universality is a work in progress.
If this election cycle is a mirror, then it is reflecting a society choked with fear. It's not just threats of terrorism, economic collapse, cyberwarfare and government corruption – each of which some 70 percent of our citizenry is afraid of, according to the Chapman University Survey on American Fears. It's the stakes of the election itself, with Hillary Clinton at last month's debate conjuring images of an angry Donald Trump with his finger on the nuclear codes, while Trump warned "we're not going to have a country" if things don't change. ... Meanwhile, the electorate is commensurately terrified of its potential leaders. According to a September Associated Press poll, 56 percent of Americans said they'd be afraid if Trump won the election, while 43 percent said they'd be afraid if Clinton won – with 18 percent of respondents saying they're afraid of either candidate winning. ... Around the globe, household wealth, longevity and education are on the rise, while violent crime and extreme poverty are down. In the U.S., life expectancy is higher than ever, our air is the cleanest it's been in a decade, and despite a slight uptick last year, violent crime has been trending down since 1991. ... For mass media, insurance companies, Big Pharma, advocacy groups, lawyers, politicians and so many more, your fear is worth billions. And fortunately for them, your fear is also very easy to manipulate. We're wired to respond to it above everything else. If we miss an opportunity for abundance, life goes on; if we miss an important fear cue, it doesn't. ... in order to resist being manipulated by those who spread fear for personal, political and corporate gain, it's necessary to understand it.
The brain would be preserved there—the liquid nitrogen topped off once in a while—for however long the science and technology community takes to solve some vexing problems. First, how to repair the tissue damage caused by freezing. Second, and more important, how to gain access to the data inside—the neurons and connections and impulses that constitute a person’s memories, emotions, and personality—and bring it all back to life, either in another, healthier body or uploaded into a computer. ... The best way to cryopreserve is to replace all the water in the body with a chemical that essentially turns the tissue into glass as it freezes. Vitrification, as the process is known, prevents the damage caused by ice crystals when a body is frozen in its natural state. But vitrification has its own flaw: No one knows how to reverse it. ... Cryonics was first proposed by the physicist Robert Ettinger in his 1964 book, The Prospect of Immortality. Five years later, the first human was frozen, and a small, devoted community of cryonicists (almost all of them in America) have been debating best practices ever since. Today, the world leader is Alcor Life Extension Foundation
If you were able to observe this creature in person, which is hard to do, given that they live in only a few places on earth, you would find it in a family network—a harem—with a dominant stallion watching over mares and their offspring, in groups of 5 to 15. For this to happen, you would have to be in Mongolia, Kazakhstan, China or Russia, the only places the horse lives anymore in the wild. ... You don’t ride the takhi, or stable it, or—pony-like as the horse appears—saddle it up and perch children on it at birthday parties. The horse is too wild for that. While it has been captured and occasionally confined to zoos, it has never been tamed—it is the only truly wild horse in existence. Other horses that are thought of as wild are in fact feral. ... There are roughly 2,000 takhi in the world right now, and the largest number of them live at Hustai National Park, within 60 miles of Mongolia’s capital, Ulaanbaatar.
Bringing people back from death’s door is Catena’s moonlight gig – she is on shift from 6pm to 2am six to eight times a month. By day, she is the managing director of Catena Zapata, the flagship brand of a family-owned company that sells bottles worth over $140m a year, making it Argentina’s second-biggest wine exporter. The firm was founded in 1902 by her great-grandfather Nicola Catena, and she assumed the reins from her father Nicolás in 2009. She spends four months a year in Argentina overseeing the winery’s operations, and two more as the olive-skinned, pony-tailed “face of Argentine wine”, promoting her products at tastings and dinners across the globe. She manages her staff of 120 via Skype and WhatsApp. ... Catena insists she sees her role as that of a detective, not an inventor. And she has modelled the CIW not after the development arm of a pharmaceutical firm, synthesising precious new compounds from scratch, but rather the upstream division of an oil company, searching for natural treasures the Earth has hidden away. ... how can destroying wine help Catena Zapata make its tipples taste better rather than worse? The answer is that the CIW is using baking as a kind of stress test: all wines subjected to this treatment will suffer, but some will suffer more and others less.
Biological systems don’t defy physical laws, of course — but neither do they seem to be predicted by them. In contrast, they are goal-directed: survive and reproduce. We can say that they have a purpose — or what philosophers have traditionally called a teleology — that guides their behavior. ... By the same token, physics now lets us predict, starting from the state of the universe a billionth of a second after the Big Bang, what it looks like today. But no one imagines that the appearance of the first primitive cells on Earth led predictably to the human race. Laws do not, it seems, dictate the course of evolution. ... Animals are drawn to water not by some magnetic attraction, but because of their instinct, their intention, to survive. Legs serve the purpose of, among other things, taking us to the water. ... there appears to be a kind of physics of things doing stuff, and evolving to do stuff. Meaning and intention — thought to be the defining characteristics of living systems — may then emerge naturally through the laws of thermodynamics and statistical mechanics.
The company’s mission: to build a Bell Labs of aging research. It hoped to extend the human life span by coming up with a breakthrough as important, and as useful to humanity, as the transistor has been. ... Google’s founders created an academic-biotech hybrid they call an R&D company to follow up on such clues, providing nearly unlimited funding to a group of top researchers. ... despite the hype around its launch—Time magazine asked, “Can Google Solve Death?”—Calico has remained a riddle, a super-secretive company that three years in hasn’t published anything of note, rebuffs journalists, and asks visiting scientists to sign nondisclosure agreements. ... Right now, there’s no proven test for a person’s “biological” age; finding one would be scientifically useful and possibly lucrative. ... For all these diseases, aging is the single biggest risk factor. An 80-year-old is 40 times as likely to die from cancer as someone middle-aged. The risk for Alzheimer’s rises by 600 times. But what if it were possible to postpone all these deaths by treating aging itself? … The experiment will generate millions of readings—for levels of growth hormones and glucose, among other things. Churchill wouldn’t say how much Calico is paying, but simply feeding that many mice could cost $3 million.
Maps are for humans, but how do animals, which began navigating millions of years before parchment was invented, manage to find their way around? Do animal (and human) brains contain a map, and if so does it have islands and capes, North Poles and Equators, reference lines and so on? And if they do, where is it, and how does it work? How could a jelly-like blob of protoplasm contain anything as structured as a map? ... These questions have intrigued biologists for many decades, particularly because animals can perform astonishing feats such as navigating their way from the North Pole to the South and back again, like the Arctic tern; or returning home after being transported hundreds of miles away, like the homing pigeon. How animals (both human and non-human) work out their location is just beginning to be understood by brain scientists. There are maps in the brain, as it happens. The properties of these maps, which neuroscientists call ‘cognitive maps’, have turned out to be highly intriguing, and are helping us to understand not just how animals navigate, but also more general principles about how the brain forms, stores and retrieves knowledge.
Reversing Paralysis: Scientists are making remarkable progress at using brain implants to restore the freedom of movement that spinal cord injuries take away.
Self-Driving Trucks: Tractor-trailers without a human at the wheel will soon barrel onto highways near you. What will this mean for the nation’s 1.7 million truck drivers?
Paying with Your Face: Face-detecting systems in China now authorize payments, provide access to facilities, and track down criminals. Will other countries follow?
Practical Quantum Computers: Advances at Google, Intel, and several research groups indicate that computers with previously unimaginable power are finally within reach.
The 360-Degree Selfie: Inexpensive cameras that make spherical images are opening a new era in photography and changing the way people share stories.
Hot Solar Cells: By converting heat to focused beams of light, a new solar device could create cheap and continuous power.
Gene Therapy 2.0: Scientists have solved fundamental problems that were holding back cures for rare hereditary disorders. Next we’ll see if the same approach can take on cancer, heart disease, and other common illnesses.
The Cell Atlas: Biology’s next mega-project will find out what we’re really made of.
Botnets of Things: The relentless push to add connectivity to home gadgets is creating dangerous side effects that figure to get even worse.
Reinforcement Learning: By experimenting, computers are figuring out how to do things that no programmer could teach them.
Thousands of subsequent experiments have confirmed (and elaborated on) this finding. As everyone who’s followed the research—or even occasionally picked up a copy of Psychology Today—knows, any graduate student with a clipboard can demonstrate that reasonable-seeming people are often totally irrational. Rarely has this insight seemed more relevant than it does right now. Still, an essential puzzle remains: How did we come to be this way? ... new book, “The Enigma of Reason” (Harvard), the cognitive scientists Hugo Mercier and Dan Sperber take a stab at answering this question. ... point out that reason is an evolved trait, like bipedalism or three-color vision. It emerged on the savannas of Africa, and has to be understood in that context. ... Stripped of a lot of what might be called cognitive-science-ese, Mercier and Sperber’s argument runs, more or less, as follows: Humans’ biggest advantage over other species is our ability to cooperate. Cooperation is difficult to establish and almost as difficult to sustain. For any individual, freeloading is always the best course of action. Reason developed not to enable us to solve abstract, logical problems or even to help us draw conclusions from unfamiliar data; rather, it developed to resolve the problems posed by living in collaborative groups. ... Presented with someone else’s argument, we’re quite adept at spotting the weaknesses. Almost invariably, the positions we’re blind about are our own.
For decades, the solution to aging has seemed merely decades away. In the early nineties, research on C. elegans, a tiny nematode worm that resembles a fleck of lint, showed that a single gene mutation extended its life, and that another mutation blocked that extension. The idea that age could be manipulated by twiddling a few control knobs ignited a research boom, and soon various clinical indignities had increased the worm’s life span by a factor of ten and those of lab mice by a factor of two. The scientific consensus transformed. Age went from being a final stage (a Time cover from 1958: “Growing Old Usefully”) and a social issue (Time, 1970: “Growing Old in America: The Unwanted Generation”) to something avoidable (1996: “Forever Young”) or at least vastly deferrable (2015: “This Baby Could Live to Be 142 Years Old”). Death would no longer be a metaphysical problem, merely a technical one. ... The celebration was premature. Gordon Lithgow, a leading C. elegans researcher, told me, “At the beginning, we thought it would be simple—a clock!—but we’ve now found about five hundred and fifty genes in the worm that modulate life span. And I suspect that half of the twenty thousand genes in the worm’s genome are somehow involved.” That’s for a worm with only nine hundred and fifty-nine cells. ... For us, aging is the creeping and then catastrophic dysfunction of everything, all at once. ... The great majority of longevity scientists are healthspanners, not immortalists. They want to give us a healthier life followed by “compressed morbidity”—a quick and painless death. ... The battle between healthspanners and immortalists is essentially a contest between the power of evolution as ordained by nature and the potential power of evolution as directed by man. ... Aging doesn’t seem to be a program so much as a set of rules about how we fail. Yet the conviction that it must be a program is hard to dislodge from Silicon Valley’s algorithmic minds. If it is, then reversing aging would be a mere matter of locating and troubleshooting a recursive loop of code.
Meanwhile, a thousand miles west, on the prairies and farms of central Iowa, a 2-year-old boy named Clair Patterson played. His boyhood would go on to be like something out of Tom Sawyer. There were no cars in town. Only a hundred kids attended his school. A regular weekend entailed gallivanting into the woods with friends, with no adult supervision, to fish, hunt squirrels, and camp along the Skunk River. His adventures stoked a curiosity about the natural world, a curiosity his mother fed by one day buying him a chemistry set. Patterson began mixing chemicals in his basement. He started reading his uncle’s chemistry textbook. By eighth grade, he was schooling his science teachers. ... During these years, Patterson nurtured a passion for science that would ultimately link his fate with the deaths of the five men in New Jersey. Luckily for the world, the child who’d freely roamed the Iowa woods remained equally content to blaze his own path as an adult. Patterson would save our oceans, our air, and our minds from the brink of what is arguably the largest mass poisoning in human history.
In his new book, Adaptive Markets: Financial Evolution at the Speed of Thought, M.I.T. finance professor Andrew Lo attempts to account for the messier, more feeling realities of human behavior. A key premise is that markets evolve, like species, but much faster: “evolution at the speed of thought.” And that this evolution happens in fits and starts, in response to changes in the environment—hence, what he calls the “adaptive” markets hypothesis. It’s during these times of change that human emotions play their biggest role. Lo believes we are in one of those times now and, in his book, he applies biology, psychology, neuroscience, and history toward the goal of improving on the efficient markets hypothesis—which, Lo says, is not only flawed but is becoming increasingly so as the financial environment continues to change. ... The efficient markets hypothesis is a special case of adaptive markets. Markets are efficient if the environment is stable and investors interact with each other and natural selection operates over a long period of time.
As space exploration geared up in the 1960s, scientists were faced with a new dilemma. How could they recognize life on other planets, where it may have evolved very differently—and therefore have a different chemical signature—than it has on Earth? James Lovelock, father of the Gaia theory, gave this advice: Look for order. Every organism is a brief upwelling of structure from chaos, a self-assembled wonder that must jealously defend its order until the day it dies. Sophisticated information processing is necessary to preserve and pass down the rules for maintaining this order, yet life is built out of the messiest materials: tumbling chemicals, soft cells, and tangled polymers. Shouldn’t, therefore, information in biological systems be handled messily, and wasted? In fact, many biological computations are so perfect that they bump up against the mathematical limits of efficiency; genius is our inheritance.
Hof claims that people can address, prevent, and treat most any malady by focusing the mind to control the metabolic processes in their cells. ... Wim Hof’s curriculum vitae includes holding his breath for six minutes, running a marathon above the Arctic circle in only shorts, and achieving a Guinness world record for the longest ice bath (nearly two hours). Hence the name. ... He describes commercial pressures on Hof as external—the man himself owns little more than a handful of t-shirts and would be fine to remain that way. ... gets to the point that the Wim Hof Method isn’t really a method in any traditional sense. Method implies a systematic study with an end goal, whereas this is more a set of principles—basic concepts and a couple techniques—to be continued throughout life. Cold exposure is supposed to help people train themselves to suppress a fight-or-flight response, and holding one’s breath teaches an ability to suppress a reflex to gasp. Through these exercises, you’re meant to gain a sense of control over the body’s autonomic processes.
- Repeat: Playboy - Iceman Cometh 5-15min
What Roberts has just done, in an action that he and people who support him have performed hundreds of times, is to return to a practice that was abandoned more than 40 years ago. He has sampled the environment, hoping to find in the dirtiest, most germ-filled places an answer to one of the most pressing problems of our day. ... Drug resistance—the ability of bacteria to defend themselves against the compounds we use to kill them—has impaired the effectiveness of almost every antibiotic produced since the first ones were developed, in the 1940s. At least 700,000 people are estimated to die worldwide every year from infections that no longer respond to antibiotics. That toll could balloon to more than 10 million a year by 2050 if we can’t slow the spread of resistance or find new drugs; routine surgeries and minor injuries will become life-threatening. ... Yet making the necessary changes to stave off this catastrophe seems to be beyond us. We continue to take antibiotics with abandon (nearly a third of antibiotic prescriptions in the U.S. aren’t actually needed) and feed huge quantities of them to farm animals. And pharmaceutical companies—daunted by how quickly resistance can undermine drugs that may take a decade and a billion dollars to develop—are not rushing to fill the gap. ... He launched his campaign, called Swab and Send, in February 2015. For £5, participants got a sample tube, a mailing envelope, and an explanation of what Roberts wanted them to look for: a spot in the environment where bacteria were likely to be competing for nutrition and room to reproduce. He asked them to use their imagination. The less sanitary, the better.