Aspen Ideas - Engineering Serendipity 5-15min

I’d like to tell the story of a paradox: How do we bring the right people to the right place at the right time to discover something new, when we don’t know who or where or when that is, let alone what it is we’re looking for? This is the paradox of innovation: If so many discoveries — from penicillin to plastics – are the product of serendipity, why do we insist breakthroughs can somehow be planned? Why not embrace serendipity instead? Because here’s an example of what happens when you don’t. ... By one estimate, the rate of new drugs developed per dollar spent by the industry has fallen by roughly a factor of 100 over the last 60 years. Patent statistics tell a similar story across industry after industry, from chemistry to metalworking to clean energy, in which top-down innovation has only grown more expensive and less efficient over time. ... Instead of speeding up the pace of discovery, large hierarchical organizations are slowing down — a stagflationary principle known as “Eroom’s Law,” which is “Moore’s Law” spelled backwards. ... Any society that values novelty and new ideas (like our innovation-obsessed one) will invariably trend toward greater serendipity over time. The push toward greater diversity, better public spaces, and an expanded public sphere all increase the potential for fortuitous discoveries.

National Geographic - Inside the Eye: Nature’s Most Exquisite Creation 5-15min

Around 540 million years ago, the ancestors of most modern animal groups suddenly appeared on the scene, in an outburst of speciation known as the Cambrian explosion. Many of these pioneering creatures left fossils behind. Some are so well preserved that scientists have been able to use scanning electron microscope images to piece together their inner anatomy, eyes included, and reconstruct their owners’ view of the world. ... But these eyes were already complex, and there are no traces of their simpler precursors. The fossil record tells us nothing about how sightless animals first came to see the world. This mystery flustered Charles Darwin. “To suppose that the eye, with all its inimitable contrivances ... could have been formed by natural selection, seems, I freely confess, absurd in the highest possible degree,” he wrote in Origin of Species. ... in the very next sentence, Darwin solves his own dilemma: “Yet reason tells me, that if numerous gradations from a perfect and complex eye to one very imperfect and simple, each grade being useful to its possessor, can be shown to exist … then the difficulty of believing that a perfect and complex eye could be formed by natural selection, though insuperable by our imagination, can hardly be considered real.” ... The gradations he spoke of can be shown to exist. Living animals illustrate every possible intermediate between the primitive light-sensitive patches on an earthworm and the supersharp camera eyes of eagles. ... Even under the most pessimistic conditions, with the eye improving by just 0.005 percent each generation, it takes just 364,000 years for the simple sheet to become a fully functioning camera-like organ. As far as evolution goes, that’s a blink of an eye. ... But simple eyes should not be seen as just stepping-stones along a path toward greater complexity. Those that exist today are tailored to the needs of their users. ... Nothing that sees does so without proteins called opsins—the molecular basis of all eyes. Opsins work by embracing a chromophore, a molecule that can absorb the energy of an incoming photon. The energy rapidly snaps the chromophore into a different shape, forcing its opsin partner to likewise contort. This transformation sets off a series of chemical reactions that ends with an electrical signal.