Nautilus - Safecracking the Brain < 5min

It’s hard to imagine an encryption machine more sophisticated than the human brain. This three-pound blob of tissue holds an estimated 86 billion neurons, cells that rapidly fire electrical pulses in split-second response to whatever stimuli our bodies encounter in the external environment. Each neuron, in turn, has thousands of spindly branches that reach out to nodes, called synapses, which transmit those electrical messages to other cells. Somehow the brain interprets this impossibly noisy code, allowing us to effectively respond to an ever-changing world. ... Given the complexity of the neural code, it’s not surprising that some neuroscientists are borrowing tricks from more experienced hackers: cryptographers, the puzzle-obsessed who draw on math, logic, and computer science to make and break secret codes. That’s precisely the approach of two neuroscience labs at the University of Pennsylvania, whose novel use of cryptography has distinguished them among other labs around the world, which are hard at work deciphering how the brain encodes complex behaviors, abstract thinking, conscious awareness, and all of the other things that make us human.

The Economist - Blockchains: The great chain of being sure about things 5-15min

The technology behind bitcoin lets people who do not know or trust each other build a dependable ledger. This has implications far beyond the cryptocurrency ... lack of secure property rights is an endemic source of insecurity and injustice. It also makes it harder to use a house or a piece of land as collateral, stymying investment and job creation. ... Such problems seem worlds away from bitcoin, a currency based on clever cryptography which has a devoted following among mostly well-off, often anti-government and sometimes criminal geeks. But the cryptographic technology that underlies bitcoin, called the “blockchain”, has applications well beyond cash and currency. It offers a way for people who do not know or trust each other to create a record of who owns what that will compel the assent of everyone concerned. It is a way of making and preserving truths. ... Other applications for blockchain and similar “distributed ledgers” range from thwarting diamond thieves to streamlining stockmarkets: the NASDAQ exchange will soon start using a blockchain-based system to record trades in privately held companies. The Bank of England, not known for technological flights of fancy, seems electrified: distributed ledgers, it concluded in a research note late last year, are a “significant innovation” that could have “far-reaching implications” in the financial industry. ... Some of bitcoin’s critics have always seen it as the latest techy attempt to spread a “Californian ideology” which promises salvation through technology-induced decentralisation while ignoring and obfuscating the realities of power—and happily concentrating vast wealth in the hands of an elite. The idea of making trust a matter of coding, rather than of democratic politics, legitimacy and accountability, is not necessarily an appealing or empowering one.

The Guardian - The spy who couldn’t spell: how the biggest heist in the history of US espionage was foiled 17min

Being underestimated – by family, classmates and colleagues – had been the theme of his life, a curse he had borne silently since childhood. But for the mission he had now embarked upon, it was a blessing. None of his co-workers or managers in the intelligence community could have imagined that he of all people was capable of masterminding a complex espionage plot. ... With fortune, he imagined, respect would follow. Those who had known him would no longer doubt his intelligence. Once and for all, he would shake off the image that had dogged him since childhood. ... The sender of the envelopes was no doubt a bona fide member of the US intelligence community, with access to “top secret” documents, intent on establishing a clandestine relationship with a foreign intelligence service. The person had, in fact, already committed espionage by giving classified information to an enemy country. Carr might as well have been looking at a warning sign for a national security threat flashing in neon red. ... As long as he could get away with it, espionage was a legitimate answer to his troubles.

The Economist - Technology Quarterly: After Moore’s Law 31min

The difference between the 4004 and the Skylake is the difference between computer behemoths that occupy whole basements and stylish little slabs 100,000 times more powerful that slip into a pocket. It is the difference between telephone systems operated circuit by circuit with bulky electromechanical switches and an internet that ceaselessly shuttles data packets around the world in their countless trillions. It is a difference that has changed everything from metal-bashing to foreign policy, from the booking of holidays to the designing of H-bombs. ... Moore’s law is not a law in the sense of, say, Newton’s laws of motion. But Intel, which has for decades been the leading maker of microprocessors, and the rest of the industry turned it into a self-fulfilling prophecy. ... That fulfilment was made possible largely because transistors have the unusual quality of getting better as they get smaller; a small transistor can be turned on and off with less power and at greater speeds than a larger one. ... “There’s a law about Moore’s law,” jokes Peter Lee, a vice-president at Microsoft Research: “The number of people predicting the death of Moore’s law doubles every two years.” ... making transistors smaller has no longer been making them more energy-efficient; as a result, the operating speed of high-end chips has been on a plateau since the mid-2000s ... while the benefits of making things smaller have been decreasing, the costs have been rising. This is in large part because the components are approaching a fundamental limit of smallness: the atom. ... One idea is to harness quantum mechanics to perform certain calculations much faster than any classical computer could ever hope to do. Another is to emulate biological brains, which perform impressive feats using very little energy. Yet another is to diffuse computer power rather than concentrating it, spreading the ability to calculate and communicate across an ever greater range of everyday objects in the nascent internet of things. ... in 2012 the record for maintaining a quantum superposition without the use of silicon stood at two seconds; by last year it had risen to six hours. ... For a quantum algorithm to work, the machine must be manipulated in such a way that the probability of obtaining the right answer is continually reinforced while the chances of getting a wrong answer are suppressed.

Screen shot 2016 11 22 at 9.22.58 am